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Abstract 
In this paper, Modified Homotopy Perturbation Method (MHPM) is applied to solve the 

generalized Burgers equation and exact solutions are found. MHPM has number of 

advantages over the classical methods and techniques as it requires simple iterations which 

are easily solvable and the solution obtained by this method converges rapidly to the exact or 

analytical solution. Some examples of Burgers Equations are also solved here to check the 

accuracy and efficiency of the method.  
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1. Introduction 
Mostly the phenomenon coming from the real world is in the form of the nonlinear 

partial differential equations. These equations are very difficult to solve when they appear in 

the form of system of equations as it requires a lot of complex calculations and are time 

consuming. Among these equations there is Burgers Equation which is a very fundamental 

equation in fluid mechanics. It is also present in many different applied mathematics branches 

as in acoustic waves, dynamics modeling, turbulence, shock wave formation and heat 

conduction [1-3]. Because of its applications in different applied mathematics fields, many 

mathematicians have developed different numerical methods and techniques for the 

numerical and exact solutions of Burgers equation such as Adomian Decomposition Method 

(ADM) [4-5], Variational Iteration Method (VIM) [6-7], Homotopy Analysis Method (HAM) 

[8-9], Reduced Differential Transform Method (RDTM) [10] and Homotopy Perturbation 

Method (HPM) [11].  

In this paper, we have applied Modified Homotopy Perturbation Method (MHPM) for 

solving the Burgers (2+1), (3+1) and (n+1) Equations with given initial conditions and exact 

solutions are found. The MHPM has a major advantage other than the classical techniques 

and methods that solution is obtained after a very few iterations and this solution converges 

quickly to the exact and analytic solution. The reliability and accuracy of the proposed 

method is checked by solving some examples of Burgers Equation. 

 

2. Basic Idea of Modified homotopy Perturbation Method (MHPM) 
To understand the basic ideas of MHPM, consider the following nonlinear eqaution

 ,0 NuLu           (1) 

with the initial condition  

 ).()0,( xfxu   

Where L is the linear and N is the nonlinear operator. The variables of u0(x, t) can be 

separated as 
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and the initial condition is given by 
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We obtain c1(t) and c2(t) by Eq. (2). 

According to the Homotopy Perturbation Technique (HPM), a homotopy can be constructed 

as follows 

 ],1,0[),())(1(),( 0  pNvLvpLuLvppvH          (4) 

where p ∈ [0, 1] is an embedding parameter and u0(x, t) is an initial approximation of Eq. (1) 

Now we have, 

 .0)1,(,0)0,( 0  NvLvvHLuLvvH  

The deformation of p from zero to unity is just that of v from u0 to u, and L(v − u0) and Lv + 

Nv are called homotopy. According to the HPM, we first use the embedding parameter p as a 

“small parameter”, and assume that the solution to Eq. (4) may be expressed as a series in p 
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Setting p = 1, the approximate solution to Eq. (4) is then 
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Substituting (5) into (4) and equating the terms with the same power of p, we get 
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Combining the initial approximation u0 with the above equations, we identify vn for n = 1, 2, 

···, and obtain the n-th approximation of the exact solution as 

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If there exists some ,1,0  nvn  then the exact solution to the equation can be denoted as 


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For simplicity, in this paper we assume that ,0),(1 txv  namely, the exact solution is 

denoted as ).,(),( 0 txvtxu  since ),( txu satisfies the initial condition, we get 
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Thus we have 
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From the above formula, we get the proper c1 (t) and c2 (t). Furthermore, the appropriate 

initial approximation u0(x, t) may be obtained. The detailed process will be displayed in the 

next section. 

 

3. Numerical Examples 
In this section, we provide some examples of Burgers equation and find their exact solutions. 

Example 3.1 

Consider the following (2+1) dimensional Burgers Equation 

 ,0)()(  yyxxyxt uuuuuuu             (7) 

with the initial condition 

 .)0,,( yxyxu   
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Let us choose  
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From above equation we have a system of equations  
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Solving this equation by HPM, we get 
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This is the exact solution of the Eq. (7). 

 

Example 3.2 

Next consider the (3+1) dimensional Burgers Equation 

 ,0)()(  zzyyxxzyxt uuuuuuuuuu            (8) 

with the initial condition 
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Let us choose 
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From above equation we have a system of equations 
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Solving the above nonlinear equation by HPM we get the solution 
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So the solution of the Eq. (8) is 
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This is the exact solution of the Eq. (8). 

 

Example 3.3 

In the last, consider the following (n+1) dimensional Burgers Equation 
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with the initial condition 
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Let us choose  
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Then we have 
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From above equation we have a system of equations 
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Solving the nonlinear Eq. (10) by HPM, we get the solution of (10) 
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This is the exact solution of the Eq. (9). 

 

4. Conclusion 
In this present work, we have applied MHPM to find the exact solutions of the 

Burgers equation. 

The results gained through this method are quite efficient and reliable. Applying 

MHPM proves to a powerful scheme for finding the analytic and exact solutions of the 

nonlinear PDEs and shows the satisfactory results. 
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